Backup using rsync

Many people tend to ignore how important it is to have regular
backups of their data until something bad happens and their
stuff is gone for good. The good news is that on Linux there
is an easy way to automatically create regular backups (it
should work on other systems like Windows as well with some
tweaking). One can even keep some of the backups for a very
long time which might come in handy if you recognize something
was lost like months ago. The obvious option 1is to use the
rsync program as basis for a remote backup system.

The rsync tool

Something very smart with rsync it that one can point it to a
previous, already existing backup on the server (cf. the
—link-dest option in the script below) and rsync will compare
any file of the new backup to the data there. If a file is
existing in the old backup already rsync will not transfer the
file again, but simply hard-link to it on the server and
therefore also (almost) not consume any additional storage.

Another advantage of rsync comes into play with huge files
(think of videos or veracrypt containers): rsync compares a
file to a previous version on the server on a block level and
only transfers and updates the parts of the file that did
change.

Prepare the storage

First of all to make backups you need some kind of external
storage. Theoretically, you could make backups on the same
machine but if that one’s lost, stolen or broken all is gone
(it might be useful though to go back in time for data which
was deleted or overwritten by mistake). The next best option

https://www.spaetzle.info/backup-using-rsync/

is to have some external storage stick or drive which 1is
manually connect to your computer to run manual backups from
time to time.

The best option for normal (i.e. non-business critical) usage
seems to be a small storage server (NAS) on the local network.
A good and rather cheap option is for example a Raspberry Pi
running OpenMediaVault connected with an external SSD.

Enable secure access (ssh)

The very first step is to enable the ssh service as such on
the storage server (e.g. OpenMediaVault). How this is done
exactly depends on the server but usually this should be
installed and enabled by default. Otherwise just search around
or there should be some documentation on the internet.

For an automated, unattended backup to another server we need
to enabled ssh access based on cryptographical keys without
the need to an interactive password.

The first step is to create the required keys on the device
which will be backed up (your laptop for example):

ssh-keygen -t rsa

Answer all questions with return, i.e. keeping the defaults
and don’t enter a password!

Next, we need to copy the public key which was just created
from the device to the remote server where the backups will be
stored (take your username and the name of your server) and
enter your remote password when asked for it:

ssh-copy-id user@hostname

The private, secret key will always stay on your local
machine; typically it will be stored in the directory .ssh.

Now give it a try to see if everything works out fine — just

enter (again take your own user name and server name):

ssh user@hostname

You should be connected to your remote shell right away
without any password requests. In case it shouldn’t work try
the command with ssh -v or ssh -vv and check the output for an
indication what might be wrong.

To make life a bit easier you might also want to configure
some of your ssh connections so they will be easier to use. To
do so, just open the config file with:

nano ~/.ssh/config

and enter your details as needed like below:

Host mediaserver mediaserver.alpha
Hostname mediaserver.alpha
User admin

Host storage
Hostname storage.alpha
User tom

There are tons or options that can be defined in this ssh
config file — start out with man ssh config to check them out.

Rsync backup (push to server)

You need to decide where to store the backup script on your
device (typically a laptop nowadays) and a good idea 1is to
create a dedicated directory in your home directory. It’s also
wise to make it hidden, i.e. to start the name with a dot so
it won’t be visible by standard and it won’t be backed up by
the script.

mkdir ~/.rsync
cd ~/.rsync
nano backup.sh

and paste in the following while changing everything specific
for your local environment and setup (e.g. path names, user
name, maximum bandwidth, etc.):

#'!/bin/bash
LOGFILE="${0%.*}".log

To ensure only one instance of the backup-script is running
we create a lock-dir first.
The lock 1is removed automatically on exit (including
signals).
if ! mkdir "${0%.*}".lock; then

echo "Lock detected (either rsync still running or
manually locked); backup aborted..."

exit 1

fi
trap 'rm --recursive --force --one-file-system "${0%.*}".lock'
EXIT

In case anything is failing during execution we want to
catch it here and stop the script.

Unfortunately, the following doesn't work for commands
within a 'if' query... !

trap 'echo "Error encounted while executing $BASH COMMAND.
Exiting..." >> $LOGFILE; exit 1' ERR

echo "Starting new backup..." $(date) > $LOGFILE

SOURCE="/home/tom/"
SERVER="tom@storage.alpha"
BACKUP="/mnt/backup/laptop/tom/latest"
TARGET="$SERVER: $BACKUP"

if ssh $SERVER "test -e '$BACKUP'"; then

echo "Latest full backup still exists (not archived yet).
Exiting..." >> $LOGFILE

exit 1
fi

RSYNCOPTIONS="--archive --numeric-ids --one-file-system --

exclude-from=.rsync/backup.exclude --link-dest=../hourly.0 --
compress --bwlimit=400K --partial-dir=.rsync-partial --human-
readable --stats"

ionice -c2 -n7 nice -n 19 rsync $RSYNCOPTIONS "$SOURCE"
"$TARGET.tmp" >> $LOGFILE

ssh $SERVER "mv '$BACKUP.tmp' '$BACKUP'" # Put the
backup in place, so it's marked as completed

ssh $SERVER "touch '$BACKUP'" # Timestamp
the backup

echo "Backup script completed..." $(date) >> $LOGFILE

and make it executable:

chmod u+x backup.sh

Last step for the backup 1is to create a small file called
backup.exclude which contains what will not be backed up. An
example could be:

Always exclude files and directories with the following
endings
*.part

.iso

.img

. log

.bak

.old

.z1ip

i

.tmp

.temp

.core

. lock
.crdownload
.mp4

X X X X K K X X X X X ¥ ¥

As an exception to the rule below we include the following
hidden directories
+ .rsync/

+ .hades/

Now exclude all hidden files and directories (starting with
a dot) from the backup

Uk

Exclude temporary folders as well
*/temp/
*/tmp/

And finally exclude any confidential files that might be
mounted to this directory
Hades/

With these exclude filters everything (files and directories)
starting with a dot in the name and all files ending on .part
or .iso are excluded from the backup.

First of all you should try the backup manually; maybe with a
rather small scope of files to backup (so it doesn’t run for
hours while testing). To start the script, simply type

.rsync/backup.sh

in your home directory and check the log-file in the same
directory and the backups on the server. Note: if the script
is run by cron then the it will be run from your home
directory, therefore the relative path to the exclude-file 1is
relative to the home directory. If run from another directory
the relative path to the exclude file must be changed
accordingly.

Now run a full backup which easily can take many hours. Then
manually rename that backup on the server from latest to
hourly.0 and run the backup script again. This time it should
complete within a few minutes at most. Check the new backup on
the server and will find the hard-linked files there.

If everything looks fine one probably wants to run the script
automatically like for example each hour. To enable this

simply make in entry into crontab with:

crontab -e

and add the following line (or something similar) at the end
of the file:

@ * * * * /home/tom/.rsync/backup.sh

In case you want to avoid the script to be running for some
time simply create the lock manually (in the script
directory):

mkdir backup.lock

You might want to check the log-file in the same directoy to
see if everything is working as it should. And don’t forget to
remove the lock in case you created it manually and you want
to run the backups again:

rmdir backup.lock

If you want to lock the backup script quite frequently it
might be a good idea to define alias commands for the locks.

Archive of backups

Usually, one also wants to keep a few of the backups for a
longer time. This means that some of the older backups should
be kept for the future. This is accomplished with archiving
the backups which can be easily automated with the following
shell script.

Connect to your storage (NAS) server and become root to save
the script:

su
nano /root/backup-archive.sh

Now paste in the following — adjusting the path $BASE and a
few other things maybe to your local setup and needs (don’t

worry, the script looks much more complicated than it actually
is):

#'!/bin/bash

To ensure only one instance of the backup-script is running
we create a lock-dir first.
The lock is removed automatically on exit (including
signals).
if ! mkdir "${0%.*}".lock; then

echo "Lock detected (either script still running or
manually locked). Exiting..."

exit 1

fi
trap 'rm --recursive --force "${0%.*}".lock' EXIT

In case anything is failing during execution we want to
catch it here and stop the script.

Unfortunately, the following doesn't work for commands
within a 'if' query... !

trap 'echo "Error encounted while executing $BASH COMMAND.
Exiting..."; exit 1' ERR

BASE="/mnt/backup/laptop/tom"
N=100 # Maximum number of backups per category

case $1 in
hourly)
if [! -d "$BASE/latest"”]; then
echo "No new backup available to be archived (no
folder 'latest'). Exiting..."
exit
fi
If the latest backup is identical to the previous
one in 'hourly.0' then skip
the backup rotation. Exit status of 'diff' is 0 if
inputs (directories) are
identical, 1 if they are different, 2 if there's any
kind of trouble.
if diff --recursive --brief --no-dereference

$BASE/latest $BASE/hourly.0; then
echo "Not rotating, since there are no changes 1in
‘latest' since last backup.”
echo "Removing 'latest' so a new backup will be
made. "
rm --recursive --force "$BASE/latest”
exit
fi
rm --recursive --force "$BASE/hourly.8"
for I in {100..0}; do
if [-d "$BASE/hourly.$I"]; then mv
"$BASE/hourly.$I" "$BASE/hourly.$((I+1))"; fi
done
mv "$BASE/latest" "$BASE/hourly.0"
daily)
until [-d "$BASE/hourly.$N"]; do # Keep at
least hourly.0 for the hard links
if (($N == 1)); then echo "No hourly backup
available for daily backup. Exiting..."; exit; fi
let N--
done
rm --recursive --force "$BASE/daily.5"
for I in {100..0}; do
if [-d "$BASE/daily.$I"]; then mv
"¢BASE/daily.$I" "$BASE/daily.$((I+1))"; fi
done
mv "$BASE/hourly.$N" "$BASE/daily.0"

Ca
r

weekly)
until [-d "$BASE/daily.$N"]; do
if (($N ==)); then echo "No daily backup
available for weekly backup. Exiting..."; exit; fi
let N--
done

rm --recursive --force "$BASE/weekly.4"
for I in {100..0}; do
if [-d "$BASE/weekly.$I"]; then mv
"$BASE/weekly.$I" "$BASE/weekly.$((I+1))"; fi
done
mv "$BASE/daily.$N" "$BASE/weekly.0Q"

monthly)
until [-d "$BASE/weekly.$N"]; do
if (($N == 0)); then echo "No weekly backup
available for monthly backup. Exiting..."; exit; fi
let N--
done
rm --recursive --force "$BASE/monthly.12"
for I in {100..0}; do
if [-d "$BASE/monthly.$I"]; then mv
"$BASE/monthly.$I" "$BASE/monthly.$((I+1))"; fi
done
mv "$BASE/weekly.$N" "$BASE/monthly.0"

[
r

yearly)
until [-d "$BASE/monthly.$N"]; do
if (($N ==)); then echo "No monthly backup
available for yearly backup. Exiting..."; exit; fi
let N--
done

for I in {100..0}; do
if [-d "$BASE/yearly.$I"]; then mv
"$BASE/yearly.$I" "$BASE/yearly.$((I+1))"; fi
done
mv "$BASE/monthly.$N" "$BASE/yearly.0"

*)
echo "Invalid (or no) option. Exiting..."
esac
It must be invoked by giving an argument (either hourly,
daily, weekly, monthly, or yearly) depending on what level of
backups should be archived.

Once you confirmed it’s working by running it manually a few
times the best practice is to invoke it automatically and
regularly by setting up crontab. The different levels of
rotations should be run at different daytimes, e.g. run the
yearly one at 3:10 am (once a year), the monthly one at 3:20
am (once a month) and so on. The hourly rotation should be

scheduled a few minutes before the new backup on the laptop
runs — e.g. run the hourly rotation at 10 mins before the top
of the hour if the backup script on the source device (laptop)
runs at the full hour.

Just one example for cron (setup via sudo crontab -e):

20 * * * * /root/backup-archive.sh hourly
25 3 * * * /root/backup-archive.sh daily

30 4 * * 1 /root/backup-archive.sh weekly
35 41 * * /root/backup-archive.sh monthly
40 4 1 1 * /root/backup-archive.sh yearly

Retrieve files

You can mount your remote backup via sshfs to a local,
existing folder called backup with something like:

sshfs tom@storage.alpha:/mnt/backup/laptop/tom/ ~/backup -o
idmap=user -o uid=$(id -u) -o gid=$(id -g)

To see your mouted drives and the backup use the df command.

Just 1in case there are directories contained which were
encrypted with gocryptfs, you can decrypt them with (assuming
the directory decrypt already exists; replace ,my backup‘ with
your encrypted folder):

gocryptfs -ro ~/backup/'my backup' ~/decrypt

Once done you can unmount your directories (either gocryptfs
or sshfs) with:

fusermount -u ~/backup

Final thoughts

This backup setup and the two shell scripts are quite
simplistic and in no way elaborated — but the whole thing just

works. It’s also worth mentioning that there are applications
around that effectively implement something pretty similar;
one example being the ,rsnapshot’ tool. Personally, I prefer
to do it myself though as this gives much more flexibility

control, I can learn something — and it’s just plain fun to
see it working.

