
Host a Tor Relay
If you want to support the Tor project and you have some
bandwidth to share (at least 10 Mbps in both directions, i.e.
download and upload) you might consider hosting a Tor (Non-
Exit) Relay. There are no legal implications as only fully
encrypted Tor traffic is coming in outgoing on your internet
connection. It can be done quite easily with a Raspberry Pi
(needs at least 2 GB of RAM) or any similar hardware as
described below.

Our assumption is that we connect the Raspberry Pi with an
ethernet cable to our ISP router, it is running on Manjaro
(Minimal version, also called ‚headless‘ i.e. no graphical
user interface).

Install Tor
This is straighforward, just install it with:

sudo pacman -Syu tor

then we need to provide the configuration for it (keeping the
default file as reference):

sudo mv /etc/tor/torrc /etc/tor/torrc.default
sudo nano /etc/tor/torrc

Our configuration for a Tor Relay will be something similar
to:

NickName MyNewTorRelay
ContactInfo myemail@example.org

User            tor
AvoidDiskWrites 1
DataDirectory   /var/lib/tor
Log notice file /var/log/tor/tor.log

ORPort          4020 IPv4Only

https://www.spaetzle.info/tor-relay/


ExitRelay       0
SocksPort       0

RelayBandwidthRate  42 Mbit
RelayBandwidthBurst 48 Mbit

The contact information is optional but might be quite handy
for  others  if  there  should  be  something  strange  with  the
relay. It doesn’t have to be an email address but could be any
kind of text.

In case you are running more than just one Tor Relay you have
to also include a „MyFamily“ option in the config above and
list all your key-fingerprints of your Tor Relays in each of
the torrc config files. You get the fingerprint with

sudo -u tor tor –list-fingerprint

and remember that there must be a $ (Dollar-sign) at the
beginning of each fingerprint.

Crucial:  One  might  need  to  create  the  directories  in  the
config file and make them owned by tor – they should look
like:

drwx------  5 tor  tor  4096 Dec 31 09:47 tor

You should check that the syntax of the config file is correct
with:

sudo -u tor tor --verify-config

Port Forwarding on ISP Router
In our example the Raspberry Pi (our Tor Relay) sits behind a
router which is the gateway into the internet (often provided
by the ISP). With the tor configuration above we need to
establish port forwarding on this internet router, so TCP
traffic coming from the internet (on port 4020) is forwarded
to the Tor Relay (on the same ports).



If you would like to use other ports to the outside world
(internet) than on the Tor Relay server itself, the Tor config
file (torrc) needs to have something like:

ORPort 80 NoListen
ORPort 4020 NoAdvertise

The port forwarding on the ISP router then obviously has to
forward port 80 to port 4020 on the Tor Relay.

The ports chosen are kind of arbitrary and we are free to take
whatever we like. One advantage of advertising (i.e. using)
ports 80 towards the internet is that they are very unlikely
to be blocked as they are usually taken for http and https
traffic. The drawback is that you can’t use these ports for
something else (like a web-presence). Also some routers seem
to have issues with port-forwarding these ports (e.g. lost
after a router-reboot).

The  details  on  how  port  forwarding  is  configured  on  the
internet router depends heavily on that device but usually
each of these kind of routers offers this feature somehow
(just search the internet in case this is not obvious).

Start and Test it!
First  let’s  start  Tor  (so  it  picks  up  the  latest
configuration):

sudo systemctl start tor

Check the logs for what Tor does and if it complains about
anything – the following commands might be useful to check for
any errors:

sudo systemctl status tor.service
sudo cat /var/log/tor/tor.log
journalctl | grep Tor

You are perfectly fine if you see something like „Self-testing



indicates your ORPort is reachable from the outside„. If there
are no issues your new Tor Relay will also become visible on
the  torproject  metrics-webpage  at
metrics.torproject.org/rs.html (this might take a few hours
though, so be patient).

One  could  also  increase  the  level  of  logging  information
written by tor. Just change the option in the /etc/tor/torrc
configuration file – after the „log“ statement one could place
either debug, info, notice, warn, or err. Additionally, one
could (temporarily, for debugging) turn off the scrubbing of
sensitive  information  in  the  log-files  as  well.  So  for
debugging include something like the following in the torrc

SafeLogging 0
Log info file /var/log/tor/tor.log

Once running fine one should keep the logging at the ’notice‘
level though.

To permanently enable Tor running it needs to be enabled (so
it will be started automatically after a reboot):

sudo systemctl enable tor

Also note that it takes up to 2 months until a new Tor Relay
gets  fully  used  –  and  since  there  is  not  always  traffic
available it will mostly never really run at the full possible
bandwidth.  See  this  article  for  some  background  on  it:
blog.torproject.org/lifecycle-new-relay.

Backup of Tor’s keys
If  you  want  to  be  able  to  continue  with  the  same  Relay
identity on another server (e.g. when moving servers of the
server dies) one needs two key-files:

/var/lib/tor/keys/ed25519_master_id_secret_key
/var/lib/tor/keys/secret_id_key

https://metrics.torproject.org/rs.html
https://blog.torproject.org/lifecycle-new-relay


If  you  ever  set  up  a  new  Tor  relay  just  overwrite  the
automatically generated key with these old ones and you new
relay has the same identity as before.

NextCloud  over  Tor  (onion
service)
Using a cheap Raspberry Pi it’s quite easy for someone with
some general linux knowledge to set up an own nextcloud server
which is available on the Tor network.

https://www.spaetzle.info/nextcloud/
https://www.spaetzle.info/nextcloud/

